Flood Forecasting and Inundation Mapping Using HiResFlood-UCI and Near-Real-Time Satellite Precipitation Data: The 2008 Iowa Flood

نویسندگان

  • PHU NGUYEN
  • ANDREA THORSTENSEN
  • SOROOSH SOROOSHIAN
  • KUOLIN HSU
  • AMIR AGHAKOUCHAK
چکیده

Floods are among the most devastating natural hazards in society. Flood forecasting is crucially important in order to provide warnings in time to protect people and properties from such disasters. This research applied the high-resolution coupled hydrologic–hydraulic model from the University of California, Irvine, named HiResFlood-UCI, to simulate the historical 2008 Iowa flood. HiResFlood-UCI was forced with the near-realtime Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Cloud Classification System (PERSIANN-CCS) and NEXRAD Stage 2 precipitation data. The model was run using the a priori hydrologic parameters and hydraulic Manning n values from lookup tables. The model results were evaluated in two aspects: point comparison using USGS streamflow and areal validation of inundation maps usingUSDA’s flood extentmaps derived fromAdvancedWide Field Sensor (AWiFS) 56-m resolution imagery. The results show that the PERSIANN-CCS simulation tends to capture the observed hydrograph shape better than Stage 2 (minimum correlation of 0.86 for PERSIANN-CCS and 0.72 for Stage 2); however, at most of the stream gauges, Stage 2 simulation provides more accurate estimates of flood peaks compared to PERSIANNCCS (49%–90% bias reduction from PERSIANN-CCS to Stage 2). The simulation in both cases shows a good agreement (0.67 and 0.73 critical success index for Stage 2 and PERSIANN-CCS simulations, respectively) with the AWiFS flood extent. Since the PERSIANN-CCS simulation slightly underestimated the discharge, the probability of detection (0.93) is slightly lower than that of the Stage 2 simulation (0.97). As a trade-off, the false alarm rate for the PERSIANN-CCS simulation (0.23) is better than that of the Stage 2 simulation (0.31).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainfall Runoff Modelling and Inundation Analysis of Bagmati River at Terai Region of Nepal

Climatic variability, unplanned land use pattern and encroachment into the flood plain are affecting the hydrology of Bagmati river basin of Nepal. In this study, methodology to improve present flood management system with non-structural countermeasures has been elaborated. Study of hydrological condition, basin scale rainfall runoff modeling and inundation analysis is helpful to prepare commun...

متن کامل

Web-based hydrological modeling system for flood forecasting and risk mapping

Mechanism of flood forecasting is a complex system, which involves precipitation, drainage characterizes, land use/cover types, ground water and runoff discharge. The application of flood forecasting model require the efficient management of large spatial and temporal datasets, which involves data acquisition, storage, pre-processing and manipulation, analysis and display of model results. The ...

متن کامل

A PRELIMINARY APPROACH TO FLOOD RISK MAPPING AND FLOOD FORECASTING SYSTEM FOR THE LDCs

The aim of the project is the development of an Early Warning system for flood events based on precipitation analysis and related to historical flooded area detection.The recently change of Humanitarian International Agencies in the way of approaching the emergency preparedness has lead UN (United Nations) system to create a tightened collaboration with different research centers, where ITHACA ...

متن کامل

On the Use of Global Flood Forecasts and Satellite-Derived Inundation Maps for Flood Monitoring in Data-Sparse Regions

Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response decisions. Global-scale flood forecasting and satellite-based flood detection systems are currently operating, however their reliability for decision making applications needs to be assessed. In this study, we performed comparative evaluations of several operational global flood fo...

متن کامل

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015